

Advanced analysis tools for RMCProfile

This documentation aims to provide useful information about those advanced
analysis tools for RMCProfile.

Contents:

	Installation
	RMC Modules

	RMC Tools

	RMC Modules
	Bulk RMC6F configuration processing

	Nano RMC6F configuration processing

	General routine for RMC6F configuration processing

	RMC Tools
	Nanoparticle generator

	Nanoparticle linear expansion analyzer

	Nanoparticle to shells

	Bulk to shells

	RMC config strain analyzer

	Topas4RMC

	SofQ Calibration

	External Links

Installation

Contents:

	RMC Modules

	RMC Tools

RMC Modules

All RMC modules have been packaged up and made available through conda. Users
can simply install the package through conda,

conda install -c apw247 rmc_tools

RMC Tools

All RMC tools have been included in RMCProfile release package available at,
https://sourceforge.net/projects/rmcprofile/, except topas4rmc and
sofq_calib (for these two packages, installation instructions can be found
in their dedicated documentation page at Topas4RMC and
SofQ_Calib, respectively). Users can just download the
RMCProfile releaes package on a specific platform and no extra installation is
needed to get access those RMC analysis tools (again, topas4rmc and
sofq_calib not in the list here - they do need extra bit of installation).

RMC Modules

	Bulk RMC6F configuration processing

	Nano RMC6F configuration processing

	General routine for RMC6F configuration processing

Bulk RMC6F configuration processing

This modules holds stuff relevant to processing bulk RMC6F configurations.

	
class rmc_tools.bulk_stuff.BulkStuff

	RMC6F bulk configuration processing class.

This class contains methods for processing bulk RMC6F configurations.

	
bulk_to_shells(rmc6f_config)

	Method for grabbing shells from bulk RMC6F configuration.

Provided bulk RMC6F configuration, this method can extract shells from it. Since this program is to deal with bulk configuration, the center does not matter that much and therefore it is randomly placed in the bulk configuration.

	Arguments:
	rmc6f_config {Object} – Instance of RMC6FReader class

	Output:
	shell_X.rmc6f – RMC6F configuration for generated shells.

np_shell_gen.log – Log information about shells generation.

Nano RMC6F configuration processing

This modules holds stuff relevant to processing nano RMC6F configurations.

	
class rmc_tools.nano_stuff.NanoStuff

	RMC6F nano configuration processing class.

This class contains methods for processing naon RMC6F configurations.

	
cent_rad_config(rmc6f_config)

	Method for figuring out the center and radius of the input RMC6F nano configuration.

Provided nano RMC6F configuration, this method can extract information about the center and radius of the input nanoparticle configuration.

	Arguments:
	rmc6f_config {Object} – Instance of RMC6FReader class

	Output:
	The center and radius of input nanoparticle configuration can be accessed from instance variable centPos and NPRadius.

	
np_to_shells(rmc6f_config)

	Method for grabbing shells from nano RMC6F configuration.

Provided nano RMC6F configuration, this method can extract shells from it. The center of the provided nanoparticle will be figured out automatically.

	Arguments:
	rmc6f_config {Object} – Instance of RMC6FReader class

	Output:
	shell_X.rmc6f – RMC6F configuration for generated shells.

np_shell_gen.log – Log information about shells generation.

General routine for RMC6F configuration processing

This modules holds stuff relevant to processing RMC6F configurations in general.

	
class rmc_tools.rmc6f_stuff.RMC6FReader(file_name)

	RMC6F configuration reader

Given the full path of RMC6F configuration file as input, when declaring instance to this class, it will read in read in the RMC6F configuration. Several instance variables will be made available, as detailed below,

	Variable name

	Property

	Type

	self.atomsCoord

	Atomic coordinates for all

	list

	self.atomsCoordInt

	RMC Internal atomic coordinates

	list

	self.atomsEle

	Element symbol for all atoms

	list

	self.atomsLine

	All atom lines

	list

	self.atomTypes

	Atom types present

	list

	self.fileName

	The input RMC6F file name

	string

	self.header

	Head lines of RMC6F file

	string

	self.initNumRho

	Number density

	float

	self.lattPara

	Lattice parameters

	list

	self.numAtoms

	Number of atoms

	int

	self.numAtomEachType

	Number of each atom type

	list

	self.numTypeAtom

	Number of types of atoms

	int

	self.scDim

	Supercell dimensions

	list

	self.uniq_ref

	Compressed info for all atoms

	dict

	self.vectors

	Lattice vectors

	list

	
rmc_tools.rmc6f_stuff.dist_calc_coord(coord1, coord2, vectors)

	Distance calculator

	Parameters

	
	coord1 (1D list or numpy.array with 3 entries.) – Coordinate of first atom.

	coord2 (1D list or numpy.array with 3 entries.) – Coordinate of first atom.

	vectors (2D list or numpy.array) – Lattice vectors - x, y and z, respectively.

	Returns

	Distance between the two input atoms.

	Return type

	float

RMC Tools

	Nanoparticle generator

	Nanoparticle linear expansion analyzer

	Nanoparticle to shells

	Bulk to shells

	RMC config strain analyzer

	Topas4RMC

	SofQ Calibration

Nanoparticle generator

This routine provides capability of generating nanoparticle(s) from
provided RMC6F configuration file as input. This script has been
embodied into the RMCProfile release package, so that one can launch
the RMCProfile terminal and then execute

np_gen RMC6F_FILE_FULL_NAME

to run the generator.

Here following are the major features of this program,

	Generate spherical particle(s) from RMC6F config.

	Generate particles with facets, assuming cubic symmetry, or no symmetry.

	Keep the surface terminated.

	Generate randomly packed multiple particles in box.

Attention

We need to generate a huge RMC6f configuration (using, e.g. data2config), say, with the dimension of 50x50x50.

Attention

The program will ask a bunch of questions during execution, as detailed below.

	
	The generation scheme – ‘0’ for generating multiple particles (as close packing as possible), ‘1’ for generating a single nanoparticle.
	
	If ‘1’ is selected
	
	Particle shape – ‘0’ for sphere, ‘1’ for polygon.

	If ‘0’ is selected
	2.1. Particle radius

	If ‘1’ is selected
	2.1. Roughly estimated particle quasi-radius (of the polygon).

2.2. Input file containing the facets list.

Here follows is provided an example facet list file,

Example facet list file

Explanation for entries is provided below,

	Entry

	Description

	DISTANCE_MEAN_VAL

	
Expected perpendicular distance from the

center to each facet

	DISTANCE_VAR_VAL

	Variation of the aforementioned distance

	CUBIC_SYMMETRY

	
By specifying cubic symmetry for the system,

equivalent facets will be generated automatically

	FACETS

	
The number of facets to be specified in the list.

List of facets should be provided following this

line, consecutively

	Location of the particle center. A list will be given here, we only need to refer to the list for input options.

	Estimated surface layer thickness in angstrom. This is for the purpose of searching for surface termination bonding later on. Usually, ‘3.0’ is a good estimation.

	Atom type to be fully coordinated. Usually, we may just want to guarantee metal atoms are fully coordinated and leave, e.g. oxygen dangling. Again, a list of options will be given here.

	Atom type we want to terminate the surface with, e.g. oxygen. Here, the utility can only terminate the surface with atoms already existing in the original configuration.

	Lower limit to check for surface bonding.

	Upper limit to check for surface bonding.

	If ‘0’ is selected
	
	Particle radius and its variation in angstrom.

	Minimum and maximum of the gap between particles.

	Estimated surface layer thickness.

	Atom type to be fully coordinated. Usually, we may just want to guarantee metal atoms are fully coordinated and leave, e.g. oxygen dangling. Again, a list of options will be given here.

	Atom type we want to terminate the surface with, e.g. oxygen. Here, the utility can only terminate the surface with atoms already existing in the original configuration.

	Lower limit to check for surface bonding.

	Upper limit to check for surface bonding.

Along with the output RMC6F file for the generated nanoparticle(s), there are
several other output files, as described below,

	Single particle generation:
	
	np_single.out:
	Output information about the generated single nanoparticle and the file content should be self-explanatory.

	Multiple particles generation:
	
	np_rpm.out:
	Output information about the generated particles, where all relevant coordinates are given in fractional form.

	np_rpm_cart.out:
	Output information about the generated particles, where all relevant coordinates are given in Cartesian form.

	np_rpm_par_belong.out:
	Output information about to which particle a certain atom in the output RMC6F configuration belongs.

	np_rpm_rot.out:
	Output information about the rotation angles for each generated particle, as compared to their original orientation in the input RMC6F configuration.

Nanoparticle linear expansion analyzer

This python routine takes the initial and fitted nano RMC6F configuration as
inputs and will analyze the linear expansion of lattice in the fitted nano
configuration. The goal is to find a lattice that best matches the initial
one through linear expansion of the fitted lattice. Input from command line
will be needed during execution and the CLI prompt should be already self-explaining.

The linear fitted configuration will be stored in whatever file name specified in the very last step. The linear fitting information can be found in a file named ‘np_lin_analyzer.out’. Specially, the diagonal elements of the inverse Hessian matrix will give the uncertainty of the corresponding fitted variable.

Nanoparticle to shells

This little Python script is basically just calling the method implemented in
rmc_tools for dividing nano RMC6F configuration to shells. The script has been
embodied into RMCProfile release package so that it can be executed within
RMCProfile environment, simply as,

np_shells RMC6F_CONFIG

	Output:
	shell_X.rmc6f – RMC6F configuration for generated shells.

np_shell_gen.log – Log information about shells generation.

Bulk to shells

This little Python script is basically just calling the method implemented in
rmc_tools for dividing bulk RMC6F configuration to shells. The script has been
embodied into RMCProfile release package so that it can be executed within
RMCProfile environment, simply as,

bulk_shells RMC6F_CONFIG

	Output:
	shell_X.rmc6f – RMC6F configuration for generated shells.

np_shell_gen.log – Log information about shells generation.

RMC config strain analyzer

Python script for strain field analysis for RMC6F configuration. Details about
strain analysis theoretical description can be found in the following paper,

https://doi.org/10.1107/S1600576719000372

1. For microstrain analysis (Eqn. 11 in the paper mentioned above), we need a
single RMC6F configuration as the input. For the deformation gradient tensor
analysis, we need the initial and fitted RMC6F configurations as inputs.

The script has been embodied into the RMCProfile release package so that it can
be simply executed as,

rmc_strain RMC6F_CONFIG [OPTIONS]

For example, if we want to analyze the microstrain, we can type something like,

rmc_strain -i ceriaNano_NP.rmc6f -t rms

If we want to analyze deformation gradient tensor, we can type something like,

rmc_strain -i ceriaNano_NP.rmc6f -t dgt -r ceriaNano_NP_init.rmc6f

One can see a list of options by typing

rmc_strain -h

The full list of [OPTIONS] is presented below,

	-h

	Show current help information.

	-i

	[RMC6F config name] Input RMC6F configuration.

	-t

	[rms/dgt] Analysis type.

	-r

	[Reference RMC6F config file] If ‘dgt’ analysis is selected,
one needs to provide the reference RMC6F configuration for
computing the deformation gradient tensor.

	-v

	Show version information.

The program will then ask some questions interactively during execution,

a) If ‘rms’ type of analysis is selected, the program will ask whether to do
the shell analysis. Then it will ask whether this is for bulk when executing
shell analysis. The program was originally designed for analyzing nanoparticle,
and for the analysis we need to figure out the center and radius of the particle
first. Sometimes, we may also want to run the program against bulk as well just
to make sure, with some confidence, what we obtain from nanoparticle shell
analysis is real. However, for bulk model, it may be tricky to figure out the
center and radius, so we need extra input here.

If we do want to do it for bulk,
we need to first generate a nanoparticle model from the bulk configuration.
To do this, we can use the ‘bulk_shells.py’ script in the ‘NP_Shells’ folder.
The usage is similar to ‘np_shells.py’, and here we only need to generate one
shell (by specifying ‘by thickness’ for particle generation and particle radius
as the shell thickness), which is actually a nanoparticle in the center. Then we
want to copy the ‘shell_0.rmc6f’ and ‘np_shell_gen.log’ to the same directory
where we execute the ‘rmc_strain.py’ script.

Then the program will ask the minimum number of cells in each shell. We may want
to figure out an estimation based on the total number of cells information
printed out in the log file (see list above).

b) If ‘dgt’ type of analysis is selected, the program will ask for the cutoff
(in angstrom) for the local deformation analysis. Usually, 10 angstrom should be
good enough. This analysis will take a while since figuring out all neighbors
for all atoms is time consuming.

The output is described as follows, assuming the input fitted RMC6F
configuration is with the name of ‘ceriaNano_NP.rmc6f’.

Output if ‘rms’ mode selected,

ceriaNano_NP_#.log – Overall microstrain result

ceriaNano_NP_#_shells.log – Microstrain for various shells.

where ‘#’ represents the smallest integer that is not already existing in the
output file names.

Output if ‘dgt’ mode selected,

ceriaNano_NP_dgt.out – Deformation gradient tensor for each single atom.

ceriaNano_NP_rot.out – Rotation tensor for each single atom.

ceriaNano_NP_strain.out – Strain tensor for each single atom.

ceriaNano_NP_strain_invar.out – Strain invariants for each single atom.

Explanation for the output quantities can be again found in the paper,
https://doi.org/10.1107/S1600576719000372.

Topas4RMC

Graphical user interface for preparing Topas profiles to be used in Bragg
pattern fitting in RMCProfile. Running this GUI requires Topas to be already
installed which is only available on Windows. To install this GUI, users need
to install conda first (refer to https://conda.io/projects/conda/en/latest/user-guide/install/index.html).
Then the GUI can be simply installed by executing,

conda install -c apw247 topas4rmc

Detailed instruction about how to use this program has been inluced in the
Help menu of the GUI and will not be reproduced here.

SofQ Calibration

Graphical user interface for calibrating S(Q) to Bragg pattern. To install this
GUI, users need to install conda first (refer to https://conda.io/projects/conda/en/latest/user-guide/install/index.html).
Then the GUI can be simply installed by executing,

conda install -c apw247 sofq_calib

Detailed instruction about how to use this program has been inluced in the
Help menu of the GUI and will not be reproduced here.

External Links

	pystog [https://pystog.readthedocs.io/en/latest/] for preparing total scattering data.

 Python Module Index

 n |
 r

 		 	

 		
 n	

 	[image: -]
 	
 NP_Generator	

 	
 	
 NP_Generator.np_gen	

 	[image: -]
 	
 NP_Lin_Analyzer	

 	
 	
 NP_Lin_Analyzer.np_lin_analyzer	

 	[image: -]
 	
 NP_Shells	

 	
 	
 NP_Shells.bulk_shells	

 	
 	
 NP_Shells.np_shells	

 		 	

 		
 r	

 	[image: -]
 	
 RMC_Strain_Analyzer	

 	
 	
 RMC_Strain_Analyzer.rmc_strain	

 	[image: -]
 	
 rmc_tools	

 	
 	
 rmc_tools.bulk_stuff	

 	
 	
 rmc_tools.nano_stuff	

 	
 	
 rmc_tools.rmc6f_stuff	

Index

 B
 | C
 | D
 | M
 | N
 | R

B

 	
 	bulk_to_shells() (rmc_tools.bulk_stuff.BulkStuff method)

 	
 	BulkStuff (class in rmc_tools.bulk_stuff)

C

 	
 	cent_rad_config() (rmc_tools.nano_stuff.NanoStuff method)

D

 	
 	dist_calc_coord() (in module rmc_tools.rmc6f_stuff)

M

 	
 	
 module

 	NP_Generator.np_gen

 	NP_Lin_Analyzer.np_lin_analyzer

 	NP_Shells.bulk_shells

 	NP_Shells.np_shells

 	RMC_Strain_Analyzer.rmc_strain

 	rmc_tools.bulk_stuff

 	rmc_tools.nano_stuff

 	rmc_tools.rmc6f_stuff

N

 	
 	NanoStuff (class in rmc_tools.nano_stuff)

 	
 NP_Generator.np_gen

 	module

 	
 NP_Lin_Analyzer.np_lin_analyzer

 	module

 	
 	
 NP_Shells.bulk_shells

 	module

 	
 NP_Shells.np_shells

 	module

 	np_to_shells() (rmc_tools.nano_stuff.NanoStuff method)

R

 	
 	RMC6FReader (class in rmc_tools.rmc6f_stuff)

 	
 RMC_Strain_Analyzer.rmc_strain

 	module

 	
 rmc_tools.bulk_stuff

 	module

 	
 	
 rmc_tools.nano_stuff

 	module

 	
 rmc_tools.rmc6f_stuff

 	module

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Advanced analysis tools for RMCProfile

 		
 Installation

 		
 RMC Modules

 		
 RMC Tools

 		
 RMC Modules

 		
 Bulk RMC6F configuration processing

 		
 Nano RMC6F configuration processing

 		
 General routine for RMC6F configuration processing

 		
 RMC Tools

 		
 Nanoparticle generator

 		
 Nanoparticle linear expansion analyzer

 		
 Nanoparticle to shells

 		
 Bulk to shells

 		
 RMC config strain analyzer

 		
 Topas4RMC

 		
 SofQ Calibration

 		
 External Links

